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Abstract
If noise is uncorrelated during repeated measurements of the same physical
variable, averaging these measurements improves the accuracy of estimating
the variable. When two values of a variable are measured separately, the
smallest separation of these two values that can be discriminated with a
certain reliability (resolution) is inversely proportional to the square root of
the number of measurements employed. However, if measurements for these
two values are mixed together, they need to be clustered before being averaged.
Distinguishing mixed clusters with small separations can be thought of as a
problem of deciding the number of components in a finite mixture model. Using
the likelihood ratio, the second-moment estimator, and the k-means clustering
methods, we will show that a similarly defined resolution for the mixed scenario
is, approximately, inversely proportional to the fourth-root of the number of
measurements. The observed fourth-root law is explained in terms of some
more intuitive properties of the problem. We also conclude that, assuming that
the fourth-root law is universal, the methods reported here are near-optimal.

PACS numbers: 06.20.Dk, 02.50.Cw, 02.60.Pn

1. Introduction

Selecting the number of components in fitting finite mixture models to a set of observations
is an important problem that enters several types of measurements and phenomena in physics
and biophysics. For example, in scattering studies of the structure of condensed matter, one
is often faced with the problem of separating an angle-dependent scattering intensity into two
or more peaks. Similar issues occur in magnetic-resonance studies of solids or liquids when
scanning is done over magnetic field or frequency. On the other hand, the visual systems of
living organisms can use biophysical machinery to decide whether they are observing one,
two or more objects on the basis of space- and time-resolved signals impinging on the retina.
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The optimal way of deciding the number of components has not been completely resolved
(McLachlan and Peel 2000, Frayley and Raftery 1998, Hardy 1996, Tibshirani et al 2001,
Gordon 1999, Milligan and Cooper 1985). A naive likelihood ratio procedure always favours
more components, a phenomenon referred to as ‘over-fitting’ (Duda et al 2000). Two main
solutions have been suggested for this problem. One solution is to subtract a penalty term from
the log-likelihood that penalizes the models for their complexity, leading to what are called
information criteria (Akaike 1974, Bozdogan and Sclove 1984, Sclove 1987, Schwarz 1978).
(Models with more components are considered more complex.) The other main approach is
hypothesis testing, using the likelihood ratio as the test statistic (McLachlan and Peel 2000,
Everitt and Hand 1981). The null hypothesis is typically the model with smaller number of
components. In order to provide a confidence level for accepting the alternative hypothesis,
the distribution of the test statistic under the null hypothesis needs to be known.

While previous work has focused on developing, improvising and comparing different
methods for selecting the number of components, in this paper we are specifically interested
in how our ability to identify the correct number of components in a finite mixture model
improves with the number of available measurements, regardless of which method is used for
the identification process. We use simulations to study several competing methods for selecting
the number of components. In order to offer quantitative statements and complement our
computer simulation results with analytic theory, we choose a simplified mixture problem. We
assume that measurements are independently sampled from a univariate mixture-of-Gaussians
probability distribution function (PDF), with either one or two components. For the two-
component case, we assume that the exact same number of measurements (N) come from either
component1. Furthermore, we assume that the two components have equal variances (σ 2).
These variances are also equal to that of the one-component Gaussian. In the one-component
case, we sample 2N measurements, resulting in the same total as the two-component case. It
is clear that if separation between the two Gaussian components is small compared to σ , it will
be hard to discriminate them from a one-component Gaussian. It is also clear that as N gets
larger, we will be able to reliably identify two-component PDF’s with smaller separations.

To quantify the above notions, we design a two-alternative forced choice experiment in
section 2. Based on this experiment, we can define resolution, which quantifies our ability to
choose the correct number of components. We will introduce the separate scenario, only to
contrast with the mixed scenario which is the focus of this paper. Sections 3 and 4 discuss
the relationship between resolution and N for the separate and mixed scenarios, respectively.
Section 5 provides a theoretical explanation for the simulation results in section 4. Finally,
section 6 offers an optimality argument for the results and discusses them in the context of the
related work.

2. Two-alternative forced choice experiment

We are given two sets of 2N measurements each. All the measurements in one
set (homogeneous set) are sampled from a one-component Gaussian (σ 2), and all the
measurements in the other set (inhomogeneous set) are sampled, in equal numbers, from
two Gaussians (σ 2) with a mean separation of δ. (We can say that, for the homogeneous
set, δ = 0.) After sampling the measurements for the inhomogeneous set, they are mixed

1 Technically speaking, sampling 2N measurements from 1
2 [f1(x) + f2(x)] is not the same as sampling N

measurements from f1(x) and f2(x) each. The former does not result in the exactly same number of measurements
coming from each individual component. The latter is our assumption while the former is more typical of a mixture
problem. The distinction, however, is only academic in this paper as these two settings provide almost identical
results.
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together. The two sets are unlabelled and our task is to label them, i.e. to determine which set is
homogeneous and which set is inhomogeneous, using any of the methods described later in this
paper. This is called a two-alternative forced choice because we have two labels to assign to
two sets, and there are only two different ways to do this. In other words, for a given δ and N,
we may or may not label the two sets correctly. We thus define the probability P as the fraction
of correct labelling instances if the experiment is repeated an infinite number of times, with
random measurements generated independently from the underlying PDF’s each time.

In our simulations, we use the results of a finite but large number (10 000) of runs to
approximate P. In each run, we generate 4N random numbers from Gaussian distributions of
variance σ 2 as follows: three subsets consisting of N numbers and each is generated from the
same Gaussian, while the fourth subset is generated from a Gaussian whose mean is shifted
by δ with respect to the first Gaussian. The first two subsets comprise the homogeneous set,
while the remaining two subsets (which are sampled from Gaussians of different means) make
up the inhomogeneous set. We use one of the three methods described in detail in section 4 to
label the sets.

Clearly, P is a monotonically increasing function of δ and N. If δ = 0 (both sets are sampled
from a single Gaussian), we expect P = 1/2 for any N. If δ � σ , on the other hand, we
expect P → 1. In this paper, we are interested in how δ changes with N, for a fixed value of P.

For the sake of comparison, we also conceive of an alternative scenario which is very
similar to the above, except that in the inhomogeneous set, the measurements sampled from the
two Gaussians are not mixed. In other words, individual measurements are labelled, forming
two subsets containing N measurements each. The homogeneous set is also presented in the
form of two N-measurement subsets. Again, we have to decide which set is homogeneous and
which set is not. We will refer to this arrangement as the separate scenario.

The advantage of using the two-alternative forced choice paradigm is that it combines the
‘type I’ and ‘type II’ errors, related to the false alarm and hit rates, into a single measure of
performance (P) (Dayan and Abbott 2001). However, it should be noted that P, as defined
here, is different from its typical definition in hypothesis testing, which is only related to the
hit rate.

For the separate case, we expect that δ ∝ N−1/2 (see the following section), but what
about the mixed case? A faster rate of improvement is unlikely, but a slower rate is definitely
a possibility. Evaluating the significance of the difference between the mixed versus separate
scenarios will be the subject of this paper.

3. Separate sets

First we need to have a decision rule for labelling the two sets (homogeneous and
inhomogeneous). The obvious solution is to calculate the mean of the measurements in each
of the four subsets and subtract the two means for each set. The set with the larger absolute
value of the difference is labelled inhomogeneous, and the other set is labelled homogeneous.

Consider one set and assume that its two Gaussians (from each which N measurements are

sampled) have means of µ1 and µ2. We also define δ
�= |µ2 −µ1|. (For the homogeneous set,

δ = 0.) Similarly, denote the measured subset means by µ̂1 and µ̂2, and define δ̂ = |µ̂2 − µ̂1|.
The pdf describing δ̂ is given by

p(δ̂|δ) = 1

σ ′√2π

{
exp

[
− (δ̂ − δ)2

2σ ′2

]
+ exp

[
− (δ̂ + δ)2

2σ ′2

]}
if δ̂ � 0

= 0 if δ̂ < 0 (1)

with σ ′ = σ
√

2
N

.
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The probability (P) of an inhomogeneous set with absolute mean difference δ being
correctly discriminated from a homogeneous set (with δ = 0) is equal to the probability of a
random sample drawn from p(δ̂|δ) being larger than a random sample drawn from p(δ̂|0):

P(δ) =
∫ +∞

−∞
du′ p(u′|0)

∫ +∞

u′
dv′ p(v′|δ) (2)

= 1

πσ ′2

∫ +∞

0
du′ exp

(
− u′2

2σ ′2

)∫ +∞

u′
dv′
{

exp

[
− (v′ − δ)2

2σ ′2

]
+ exp

[
− (v′ + σ ′)2

2σ ′2

]}

= 1

π

∫ +∞

0
du′ exp(−u′2/2)

∫ +∞

u′
dv′
{

exp

[
−
(

v′ − δ

σ ′

)2/
2

]

+ exp

[
−
(

v′ +
δ

σ ′

)2/
2

]}
. (3)

The above expression is only a function of δ
σ ′ . (The specific form of this function is not

important for our discussion.) Since σ ′ =
√

2
N

σ, P is a function of δ
√

N
σ

. Therefore, for a
given P, δ

σ
∝ N−1/2.

4. Mixed sets

The previous definitions for µ1, µ2 and δ are valid here as well. Again, we need to come up
with a decision rule for how to label the two sets as homogeneous or inhomogeneous. We will
discuss several such decision rules and the N–δ relationship resulting from each.

4.1. Likelihood ratio method

We calculate the maximum likelihoods (MLs) for each set assuming one and two components,
and form the ratio of one-component to two-component likelihoods for them, or equivalently,
subtract the log-likelihood terms. We will then choose the set with the larger ratio to be the
inhomogeneous one. This is because the set with the larger two- to one-component ratio
shows a larger increase in goodness-of-fit upon transition from the one-component model to
the two-component model and is therefore more likely to have actually come from a two-
component pdf.

In our simple problem, the (log) likelihood ratio will have the following form:

T = 1

N

{
N∑

i=1

(xi − x̄)2

2σ 2
+ supµ̂1,µ̂2

N∑
i=1

log

[
exp

(
− (xi − µ̂1)

2

2σ 2

)
+ exp

(
− (xi − µ̂2)

2

2σ 2

)]}
.

(4)

where x̄ = (x1 + x2 + · · · + xN)/N . The 1
N

factor is included to ensure that the mean of T
independent of N. We have otherwise ignored the constant additive or multiplicative terms
since they do not affect the outcome of a two-alternative forced choice.

In practice, finding µ̂1 and µ̂2 that maximize the second term in the above expression
for T is not easy. The expectation-maximization (EM) algorithm (Dempster et al 1977,
McLachlan and Krishnan 1997) finds local maxima in the likelihood function. As such,
it is not guaranteed to find the global maximum, and in fact, when component means are
too close compared to their spread, this algorithm performs poorly (Everitt and Hand 1981,
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Titterington et al 1985). Since in our problem the focus will on close components, EM is not
the best option.

Another iterative algorithm, which can be considered an approximation to the EM
algorithm, is k-means clustering (Lloyd 1982). In our problem, k-means clustering can
be described as follows:

(i) Make initial estimates of µ1 and µ2. We will refer to these estimates as µ̂1 and µ̂2.
(ii) Assign each measurement to the estimate to which it is closer. This splits the set of

measurements into two clusters, C1 and C2: C1 = {xi ||xi − µ̂1| < |xi − µ̂2|}, C2 =
{xi ||xi − µ̂1| � |xi − µ̂2|}.

(iii) Renew estimates by averaging the measurements in each cluster: µ̂1 = 〈xi〉C1 ,
µ̂2 = 〈xi〉C2 .

(iv) If converged, stop. Otherwise, go back to 2.

The main difference between EM and k-means clustering is that in the latter, probabilities for
each measurement belonging to either components are replaced by 0 or 1, depending on which
current estimated component mean the measurement is closer to.

We observe that if we first apply the k-means clustering to the data, and then use the results
to initialize EM, the likelihood function does not improve significantly, and it can actually
decrease. Moreover, k-means clustering does not suffer from the slow convergence of the EM
method for close components. For these reasons, we take the output of k-means clustering as
the approximate ML-estimate.

We can now use different component-mean separations (δ) and find the corresponding
P-values for them, following the procedure described in section 2. We adjust δ until P is
close enough to the fixed value that we desire (0.9, for example). The δ we find is valid
for a certain N. We repeat this process for different values of N, resulting in a N–δ data set,
which is shown in figure 1. If we fit a curve of the form δ = ANβ to these data, we find that
A = (3.27 ± 0.25)σ, β = −0.271 ± 0.015. In other words, roughly speaking, δ ∝ N−1/4. If
we choose a different value of P,A changes but β does not.

4.2. Information theoretic methods

Information theoretic approaches such as Akaike’s information criterion (AIC) (Akaike
1974, Bozdogan and Sclove 1984, Sclove 1987) or the Bayesian information criterion (BIC)
(Schwarz 1978, Frayley and Raftery 1998) add a penalty term to the log-likelihood, that is a
function of d, the number of parameters in the model and/or N, the number of measurements.
Neither of these two parameters depend on the measurement set. Therefore, the likelihood
ratio will only take up a constant term which has no effect on the two-alternative forced choice
we are considering. In other words, as far as our problem is concerned, information theoretic
methods will perform exactly the same as likelihood ratio approaches.

4.3. Using estimators of δ as criteria in the two-alternative forced choice

There is no reason to limit ourselves to the likelihood ratio as the statistic used in the two-
alternative forced choice. Any other statistic whose mean is a monotonic function of δ can
be used instead. An obvious choice is the use of estimators that are designed to reproduce δ.
Here we consider two of them.

4.3.1. Second-moment estimator method. The method of moments (Pearson 1894,
McLachlan and Peel 2000) approximates the (theoretical) mixture pdf moments with the
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Figure 1. Log–log plots of the separation between the component Gaussian means (δ) as a function
of the subset size N, estimated through simulations, for the three methods used in the mixed case
(circles) and the regressed lines; the success rate P is 0.9 for all data points. δ is given in units of
standard deviation σ of component Gaussians.

(empirical) moments of the measurements to find the parameters of the model. In our simple
problem, the second moment of the measurements (V2) suffices to estimate δ:

δ̂ = 2(V2 − σ 2)1/2

with

V2 = 1

N

N∑
i=1

(xi − x̄)2 (5)

where xi are the measurements and δ̂ is our estimate of δ. A problem with the above solution
is that, for small cluster separations, V2 can be smaller than σ 2, resulting in imaginary δ̂. To
avoid this, we can compare δ̂2 instead of δ̂, allowing for negative values as well. In fact, since
any monotonic transformation of a statistic does not affect the outcome of the two-alternative
forced choice, we can use V

1/2
2 as our statistic. (The set with a larger V

1/2
2 will be labelled

inhomogeneous.) Besides avoiding imaginary results, this transformation also brings the pdf
of our statistic closer to a Gaussian shape. The significance of this will be clarified later in the
paper. Finally, evaluating V

1/2
2 does not require prior knowledge of σ .

As before, we find δ for different N and regress a straight line in the log–log plot of N–δ,
as shown in figure 1. The results are A = (3.00 ± 0.05)σ and β = −0.264 ± 0.003, which
are very close to those from the likelihood ratio method.
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Figure 2. Log–log plots of N–δ for the separate scenario, and for three different methods used in
the mixed scenario; P = 0.9; δ is given in units of σ ; 10 000 runs per N are used to estimate δ.

4.3.2. k-means clustering method. Instead of using the result of this method to form the
likelihood ratio, as we did earlier in this section, we can simply use its estimate of δ, i.e.
δ̂ = |µ̂2 − µ̂1|, as the statistic and, as in the second-moment estimator method, choose the set
with the larger δ̂ as inhomogeneous. The regression results for the N–δ data in this case are
A = (3.10 ± 0.04)σ and β = −0.265 ± 0.002 (figure 1).

4.4. Section summary

Two points in the above results merit attention. First, the N–δ data from different methods are
very close, and for all these methods, we have, approximately, δ ∝ N−1/4. We will refer to
this relationship as the fourth-root law. Figure 2 summarizes the N–δ data for the separate-set
as well as the mixed-set scenario. Note that the regression used data only for 50 � N � 1600
(6 points equally spaced in log space). We show the fit over a larger range in order to better
contrast the slopes of the lines, and to highlight the approximate intersection points of the
mixed-set and separate-set lines. We will talk about the significance of this latter point in the
discussion.

The second point is that, even for a modest N = 50, the δ found for P = 0.9 is about
1.1 σ , which is about a half of the minimum separation for the mixture pdf to have two maxima.
This is also a small enough separation for the EM algorithm to perform poorly, confirming
our assertion that the EM method is not suitable for this problem.

5. Explaining the fourth-root law

All the methods we used in the previous section follow the same pattern: they compare a
function of the measurements (the test statistic) in the two sets and choose the set with the
larger number to be the inhomogeneous set. The particular function is different in each case,
but they share some properties that we will discuss in this section. We refer to this function
as R. Since this function operates on a random set of numbers, it is itself a random number.
Moreover, its pdf is invariant under an equal shift in component means. Therefore, we can
completely parametrize this pdf by N and δ, and we denote it by p(R|δ;N).

In this section, we will prove that the following premises will result in the fourth-root law.
Note that this is a sufficient but not necessary set of conditions.

(i) The pdf p(R|δ;N) is Gaussian.
(ii) The variance

(
σ 2

R

)
of R approaches a finite non-zero limit as δ → 0, for a fixed N.

(iii) σ 2
R = Var[R] ∝ 1

N
, for a fixed δ.
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(iv) For small δ, the mean m of R is a quadratic function of δ: m(δ) = E[R] = a + cδ2.

The first premise means that

p(R|δ) = 1√
2πσR(δ)

exp

(
− (R − m(δ))2

2σ 2
R(δ)

)
(6)

where the dependence on N has been suppressed for now. Putting the above expression for
p(R|δ) in equation (2) (R plays the role of δ̂), we find

P(δ,N) = 1

2πσ0σR(δ)

∫ +∞

−∞
du′ exp

(
− (u′ − m0)

2

2σ 2
0

)∫ +∞

u′
dv′ exp

(
− (v′ − m(δ))2

2σ 2
R(δ)

)
(7)

with m0 = m(0) and σ0 = σR(0). We have suppressed the N-dependence of the terms on the
right-hand side. Two simple changes of variables give

P(δ) = 1

2π

∫ +∞

−∞
dv exp

(
−v2

2

)∫ +∞

σ0
σR(δ)

v+ m0−m(δ)

σR(δ)

du exp

(
−u2

2

)
. (8)

The above form makes it clear that P(δ,N) is only a function of σ0
σR(δ)

and m0−m(δ)

σR(δ)
. To make

their dependence on N explicit, we say that P(δ,N) is a function of σ0(N)

σR(δ,N)
and m0−mR(δ)

σR(δ,N)
.

Premises 2 and 3 result in the first fraction, σ̂0(N)

σ̂ (δ,N)
, approaching unity as N → ∞. As for the

second fraction, m̂0−m̂(δ)

σ̂ (δ,N)
, the denominator is proportional to N−1/2. To make this fraction (and

thus P) independent of N, we then need m0 − m(δ) ∝ N−1/2. But from the fourth premise,
m0 − m(δ) = cδ2. Therefore, we need δ2 ∝ N−1/2, which means δ ∝ N−1/4.

The rest of this section will discuss the validity of each of the above four premises. More
detailed proofs are given in appendices B and C.

5.1. Gaussianity of p(R|δ)
Figure 3 shows normalized histograms for R(δ = 0.5, N = 50) for all the three methods,
each accompanied by a regressed Gaussian. It is clear that while Gaussianity is a very good
approximation for the second-moment estimator and k-means clustering methods, it is invalid
for the likelihood ratio method. It is possible to modify the likelihood ratio statistic to bring
its distribution closer to Gaussianity, but remember that there is nothing fundamentally wrong
with using a test statistic with a non-Gaussian pdf, because we are interested not in calculating
a confidence level for a given set of measurements, but rather assessing the dependence of
the resolution on N. We have already seen that the resulting N–δ data for the likelihood ratio
method obeys the same power law as the other methods, but of course proving it would be
much more difficult given the non-Gaussian distribution of R in this case.

The deviation from Gaussianity for the likelihood ratio method, as illustrated in figure 3,
is not extreme. Moreover, for larger N, such deviations become less significant. Therefore,
we will continue to include simulation results for the likelihood ratio method alongside other
methods in our discussion of other premises, but keeping in mind that the whole argument for
the likelihood ratio will have an added approximation due to the non-Gaussianity of p(R|δ;N).
The proofs in appendices C and B, however, will exclude the likelihood ratio method.

5.2. Dependence of σR on δ

Consider the resolution values for N = 100 and N = 200, with K = 0.9 in both cases. For
each N and its corresponding resolution, we find the estimate error, σR . As figure 4 illustrates
for all three methods, σR approaches a finite N-dependent value as δ → 0.
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Figure 3. Probability distribution of R for δ = 0.5 (normalized by σ ) and N = 50, for all three
methods; circles: empirical values found through simulation; curves: fitted Gaussians.

5.3. Dependence of σR on N

The third premise is justified by numerical results as well as proofs for special cases. Figure 5
shows the log–log plots of σR(δ = 0.5) as a function of N, using all three methods. A linear
regression shows that the exponents are very close to −0.5. In appendix B.1 we prove this
premise for the special case of a Gaussian mixture pdf using naive estimation, a single-pass
approximation to the k-means clustering. (This essentially restricts the proof of this premise
to δ = 0.) The naive estimation method is explained in appendix A. Even for this very
simplified situation, the proof is lengthy. A proof for the second-moment estimator method is
also presented in appendix B.2.

5.4. Dependence of m on δ

If m is an even function of δ, i.e. if m(δ) = m(−δ), and if m(δ) is a twice differentiable
function, the parabolic shape will follow. Although proving this second condition is not easy
when an iterative method such as the k-means clustering is used, the above argument suggests
why the fourth-root law might be general. In appendix C, individual proofs for the second-
moment estimator and naive estimation methods are presented. Figure 6 shows the simulation
results for N = 200. The quadratic behaviour of m is evident.
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6. Discussion

The fact that the three different methods we used in this paper produce very similar results
raises the possibility that these results set an upper limit on the performance of any other
existing method for solving our problem. Indeed, we argue that, assuming the fourth-root law
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Figure 6. The δ–m data for all three methods; N = 200; results are based on 1000 runs per value
of δ; δ is normalized by σ .

is general, the prefactors that we found for the present methods are very close to being optimal.
Consider figure 2. The intersection of the N–δ lines for the mixed-set methods with that of
the separate-set case happens around N = 1. This ensures that, for all N > 1, the mixed-set
resolution is not better than that of the separate case, as expected. On the other hand, if the
mixed-set errors were to be smaller than those found here, we would have an inconsistency
because for some N > 1 mixing the measurements would actually reduce the error. Therefore,
the performance of these two methods appears to be near-optimal. Of course, if a different
method produces a different exponent β which has a larger absolute value, it can outperform
the methods presented here. An example of a sub-optimal method, at least in our problem, is
the use of the Je(2)/Je(1) statistic suggested by Duda et al (2000). The corresponding A and
β values for the N–δ data from this method are 4.8 and −0.17, respectively. These numbers
indicate both a slower rate of improvement and a lower overall level of performance for all N.

The similarity between the results obtained by the three different methods that we used
is parallel to results obtained by Furman and Lindsay (1994). They observe that using the
method of moments has computational advantages over iterative methods, such as EM, for
finding the ML-estimates, while it affects the power of the test only minimally. Moreover, they
observe that using the moment estimators to initialize the ML-estimations, a small number
of iterations is adequate for accurate results. This is consistent with our observation that the
results from the second-moment estimator and k-means clustering methods were very close.

As discussed in section 5, all of the premises required to prove the fourth-root law hold
for all the methods considered, except for the first premise in the case of the likelihood ratio
method. However, our simulations show that the fourth-root law is still valid for this method.
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The problem considered here is different from the hypothesis-testing problems in that, for
the latter, knowledge of the test statistics is crucial in determining the confidence levels. A
large body of work has addressed the null distribution of the likelihood ratio for testing the
number of components in a mixture model (see, for example, Lo et al 2001, Ghosh and Sen
1985, Titterington et al 1985, Hartigan 1985a, 1985b). The main difficulty with mixture
models is that regularity conditions do not hold for −2 log λ to have its usual distribution
of chi-squared with the number of degrees of freedom equal to the difference between the
number of parameters under the null and alternative hypotheses (McLachlan and Peel 2000,
Ghosh and Sen 1985). A number of articles have addressed the properties of the likelihood
ratio for mixture models where some parameters, such as mixture proportions or variances,
are known (Goffinet et al 1992, Polymenis and Titterington 1998, Mangin et al 1993, Chen
1994, Chen and Cheng 1997).

In summary, we have quantified the notion that mixing noisy measurements of two distinct
values of a variable not only reduces our ability to tell those values apart, but also hampers the
rate of improvement gained from enlarging the size of populations, such that the resolution is
proportional, no longer to N−1/2, but to N−1/4.
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Appendix A. Definition of the naive estimation method

This method is a one-shot approximation to the k-means clustering method. It proceeds as
follows. Find the mean of all measurements. Now, compare each measurement with this
mean, and classify all those points lying to the left of the mean in one cluster, and those lying
to the right of the mean in a second cluster. Our estimates of the two values are the means of
these two clusters:

µ̂1 = 〈xi〉X+ with X+ = {xi |xi < x̄} (A.1)

µ̂2 = 〈xi〉X− with X− = {xi |xi > x̄} (A.2)

where x̄ is the average over all measurements. Again, δ̂ = µ̂2 − µ̂1.
This algorithm provides a very good single-pass approximation to k-means clustering. It

is easy to see why this is so. If x̄ = (µ̂1 + µ̂2)/2, the two methods are exactly the same.
The above condition, in turn, would be equivalent to saying that the number of measurements
falling in X+ and X− is the same. This is a very reasonable approximation.

Appendix B. How does σR vary with N?

B.1. Naive estimation

In the following, we will prove, for the Naive estimation method, that σR ∝ N−1/2 under
the condition that the mixture pdf, f (x), can be described by a Gaussian. (This practically
restricts the analysis to δ = 0.) Without loss of generality, we can assume that this Gaussian
is zero-mean.
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To better formalize the problem, we associate two random variables, Ik and Jk, with each
measurement, xk, from the pdf, f (x), with the following definition:

Ik =
{

1 : xk > x̄
0 : xk � x̄

(B.1)

and

Jk =
{

0 : xk > x̄
1 : xk � x̄

(B.2)

with x̄ = (∑N
k=1 xk

)/
N . Note that Ik + Jk = 1 and IkJk = 0,∀ k = 1, 2, . . . , N . Also note

that these random variables are implicitly a function of all sample points. With the above
definitions, we can now re-write the expression for µ̂1 and µ̂2 from equations (A.1) and (A.2):

µ̂1 =
∑

Jkxk∑
Jk

(B.3)

µ̂2 =
∑

Ikxk∑
Ik

(B.4)

where all sums are over k = 1, . . . , N . Our strategy is to find the means and variances and
also covariances of numerators and denominators in equations (B.3) and (B.4), and use them
to find the variances of the two fractions. This works as follows. If three random variables
X, Y, Z are related by

Z = X

Y
(B.5)

and if the variances of X and Y are small compared to their means, then from δZ = δX
Ȳ − X̄δY

Ȳ2 ,
we conclude that

σ 2
Z = X̄2

Ȳ2

(
σ 2

X

X̄2
+

σ 2
Y

Ȳ2
− 2

Cov[X, Y]

X̄Ȳ

)
. (B.6)

We will, therefore, be looking for X̄, Ȳ, σ 2
X, σ 2

Y and Cov(X, Y), where X can be
∑

Ikxk or∑
Jkxk, and Y can be

∑
Ik or

∑
Jk. Moreover, since δ̂ = µ̂2 − µ̂1:

Var[δ̂] = Var[µ̂2] + Var[µ̂1] − 2 Cov[µ̂1, µ̂2] (B.7)

then, in order to find the covariance term, we also need to find E
[(∑ Ikxk∑

Ik

)(∑ Jkxk∑
Jk

)]
.

To begin with, consider
∑

Ik. We first find the mean,

E
[∑

Ik

]
= NE[I1] = N Prob(x1 > x̄) (B.8)

where the first equality is due to the identical distribution of all xk. Using the definition of x̄

E
[∑

Ik

]
=N Prob

(
y =

(
1 − 1

N

)
x1 +

(
− 1

N

)
x2 + · · · +

(
− 1

N

)
xN > 0

)
. (B.9)

Now we note that y is a linear combination of Gaussian random variables, and is therefore a
Gaussian itself. Since all xk are zero-mean, then y is also zero-mean. Thus, it is distributed
evenly around zero and so Prob(y > 0) = 1/2. As a result,

E
[∑

Ik

]
= N/2. (B.10)

Calculating E
[(∑

Ik
)2]

is more complicated(∑
Ik

)2
=
∑

I2
k +
∑
m 
=n

∑
n

ImIn. (B.11)
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Thus,

E

[(∑
Ik

)2
]

= NE
[
I2
1

]
+ N(N − 1)E[I1I2]. (B.12)

Using the definition of Ik, we note that

E
[
I2
1

] = E[I1] = 1
2 . (B.13)

On the other hand,

E[I1I2] = Prob

(
y1 =

(
1 − 1

N

)
x1 +

(
− 1

N

)
x2 + · · · +

(
− 1

N

)
xN > 0,

y2 =
(

− 1

N

)
x1 +

(
1 − 1

N

)
x2 + · · · +

(
− 1

N

)
xN > 0

)
. (B.14)

Again, it is clear that (y1, y2) are jointly Gaussian. Therefore, to calculate E[I1I2], we need to
find P, the covariance matrix for (y1, y2). Since Cov(xi, xj) = δi,j, it is easy to verify that

P =
(

E
[
y2

1

]
E[y1y2]

E[y1y2] E
[
y2

2

]
)

= σ 2

(
(N − 1)/N −1/N

−1/N (N − 1)/N

)
. (B.15)

Equation (B.14) will now translate into

E[I1I2] =
∫ ∞

0

∫ ∞

0
f (y ′

1, y
′
2) dy ′

1 dy ′
2 (B.16)

with

f (y1, y2) = 1

2π |P|1/2
e− 1

2 �yT P −1�y (B.17)

where �y = [y1, y2]T , and P is defined in equation (B.15). First, we note that

P−1 = 1

σ 2

(
(N − 1)/(N − 2) 1/(N − 2)

1/(N − 2) (N − 1)/(N − 2)

)
(B.18)

|P | = σ 4 N − 2

N
. (B.19)

Therefore,

E[I1I2] = 1

2πσ 2

√
N

N − 2

∫ +∞

0

∫ +∞

0

× exp

( −1

2σ 2(N − 2)

[
(N − 1)y ′2

1 + (N − 1)y ′2
2 + 2y ′

1y
′
2

])
dy ′

1 dy ′
2. (B.20)

But for large N,

exp

( −1

2σ 2(N − 2)

[
(N − 1)y ′2

1 + (N − 1)y ′2
2 + 2y ′

1y
′
2

]) ≈ exp

(
−y ′2

1 + y ′2
2 + (y ′

1+y ′2
2 )

N

2σ 2

)

≈ exp

(
−y ′2

1 + y ′2
2

2σ 2

)(
1 − (y ′

1 + y ′2
2 )

2σ 2

1

N

)
. (B.21)

Also, note that√
N

N − 2
=
(

1 − 2

N

)−1/2

≈ 1 +
1

N
. (B.22)
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Therefore, combining equations (B.20), (B.21) and (B.22),

E[I1I2] ≈ A +
B

N
(B.23)

with

A = 1

2πσ 2

∫ +∞

0

∫ +∞

0
exp

(
−y ′2

1 + y ′2
1

2σ 2

)
dy ′

1 dy ′
2 (B.24)

B = 1

2πσ 2

[∫ +∞

0

∫ +∞

0
exp

(
−y ′2

1 + y ′2
1

2σ 2

)
dy ′

1 dy ′
2

− 1

2σ 2

∫ +∞

0

∫ +∞

0
(y ′

1 + y ′
2)

2 exp

(
−y ′2

1 + y ′2
2

2σ 2

)
dy ′

1 dy ′
2

]
. (B.25)

The above integrals are elementary, and the result is

E[I1I2] ≈ 1

4

(
1 − 2

π

1

N

)
. (B.26)

From equations (C.6), (B.13) and (B.26), we conclude

E

[(∑
Ik

)2
]

≈ N

2
+

N2

4

[
1 −

(
1 +

2

π

)
1

N

]
. (B.27)

Therefore,

Var
[∑

Ik

]
≈ N

2
+

N2

4

[
1 −

(
1 +

2

π

)
1

N

]
− N2

4

= N

4

(
1 − 2

π

)
. (B.28)

In summary, we found that

E
[∑

Ik

]
= N

2
and Var

[∑
Ik

]
≈ N

4

(
1 − 2

π

)
. (B.29)

Next, we consider
∑

Ikxk,

E
[∑

Ikxk

]
= NE[I1x1] = N

∫ ∞

y ′
2=0

∫ +∞

y ′
1=−∞

y ′
1f (y ′

1, y
′
2) dy ′

1 dy ′
2 (B.30)

where f (y1, y2) is the joint pdf for y1 = x1 and y2 = (1 − 1/N)x1 + (−1/N)x2 + · · · +
(−1/N)xN (note the limits of the integrals). The function f is described by (B.17), with P
calculated to be

P = σ 2

(
1 (N − 1)/N

(N − 1)/N (N − 1)/N

)
⇒

P−1 = 1

σ 2

(
N −N

−N N2/(N − 1)

)
and |P| = σ 4 N − 1

N2
. (B.31)

Therefore,

f (y1, y2) = N

2πσ 2
√

N − 1
exp

(
− N

2σ 2

[
y2

1 +
N

N − 1
y2

2 − 2y1y2

])

≈ N1/2

2πσ 2

(
1 +

1

2

1

N

)
exp

(
− N

2σ 2
(y ′

1 − y ′2
2 )

)
exp

(
− y ′2

2

2σ 2

(
1 +

1

N

))
. (B.32)
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As a result,

E
[∑

Ikxk

]
≈ N3/2

2πσ 2

(
1 +

1

2

1

N

)∫ +∞

y ′
2=0

dy ′
2 exp

(
− y ′2

2

2σ 2

(
1 +

1

N

))

×
∫ +∞

y ′
1=−∞

dy ′
1 y ′

1 exp

(
− N

2σ 2
(y ′

1 − y ′
2)

2

)

= Nσ√
2π

(
1 − 1

2

1

N

)
. (B.33)

To find the variance, we need E
[(∑

Ikxk
)2]

:

E

[(∑
Ikxk

)2
]

= E
[∑

Ikx2
k

]
+ E


∑

m 
=n

ImInxmxn




= NE
[
I1x2

1

]
+ N(N − 1)E[I1I2x1x2]. (B.34)

To find the first term, we can use the set-up of the previous case to find

E
[∑

Ikx2
k

]
≈ N3/2

2πσ 2

(
1 +

1

2

1

N

)∫ +∞

y ′
2=0

dy ′
2 exp

(
− y ′2

2

2σ 2

(
1 +

1

N

))

×
∫ +∞

y ′
1=−∞

dy ′
1 y ′2

1 exp

(
− N

2σ 2
(y ′

1 − y ′
2)

2

)
. (B.35)

Using the fact that y ′2
1 = (y ′

1 − y ′
2)

2 − 2y ′
2(y

′
1 − y ′

2) + y ′2
2 , we arrive at the following:

E
[∑

Ikx2
k

]
≈ N3/2

2πσ 2

(
1 +

1

2

1

N

)∫ +∞

y ′
2=0

dy ′
2 exp

(
− y ′2

2

2σ 2

(
1 +

1

N

))

×
[(

σ√
N

)3 √
2π + y ′2

2
σ√
N

√
2π

]

≈ N

σ
√

2π

(
1 +

1

2

1

N

)∫ +∞

y ′
2=0

dy ′
2 exp

(
− y ′2

2

2σ 2

(
1 +

1

N

))(
σ 2

N
+ y ′2

2

)

≈ Nσ 2

2
. (B.36)

For E[I1I2x1x2], we define the variables

z1 = x1

z2 =
(

1 − 1

N

)
x1 +

(
− 1

N

)
x2 + · · · +

(
− 1

N

)
xN (B.37)

z3 =
(

− 1

N

)
x1 +

(
1 − 1

N

)
x2 + · · · +

(
− 1

N

)
xN.

With the above definitions, x2 = z1 − z2 + z3. Now we note that

E[I1I2x1x2] =
∫ +∞

z′
3=0

∫ +∞

z′
2=0

∫ +∞

z′
1=−∞

z′
1(z

′
1 + z′

3 − z′
2)f (z′

1, z
′
2, z

′
3) dz′

1 dz′
2 dz′

3. (B.38)

The covariance matrix for (z1, z2, z3) is

P = σ 2


 1 (N − 1)/N −1/N

(N − 1)/N (N − 1)/N −1/N

−1/N −1/N (N − 1)/N


 . (B.39)



Fourth-root power law 4929

So,

P−1 = σ 2


 N −N 0

−N (N2 − N − 1)/(N − 2) 1/(N − 2)

0 1/(N − 2) (N − 1)/(N − 2)


 (B.40)

|P| = N − 2

N2
. (B.41)

Therefore,

E[I1I2x1x2] = N

(2π)3/2(N − 2)1/2σ 3

∫ +∞

z′
3=0

∫ +∞

z′
2=0

∫ +∞

z′
1=−∞

z′
1(z

′
1 + z′

3 − z′
2)

× exp

(
− 1

2σ 2

{
Nz′2

1 +
N2 − N − 1

N − 2
z′2

2 +
N − 1

N − 2
z′2

3

− 2Nz′
1z

′
2 +

2

N − 2
z′

2z
′
3

})
dz′

1 dz′
2 dz′

3. (B.42)

Now we note that

Nz′2
1 +

N2 − N − 1

N − 2
z′2

2 +
N − 1

N − 2
z′2

3 − 2Nz′
1z

′
2 +

2

N − 2
z′

2z
′
3

= N(z′
1 − z′

2)
2 +

1

N − 2

[
(N − 1)

(
z′2

2 + z′2
3

)
+ 2z′

2z
′
3

]
. (B.43)

Therefore,

E


∑

m 
=n

ImInxmxn


 = N(N − 1)

N

(2π)3/2(N − 2)1/2σ 3

×
∫ +∞

0

∫ +∞

0
dz′

2 dz′
3 exp

(
− 1

2(N − 2)σ 2

[
(N − 1)

(
z′2

2 + z′2
3

)
+ 2z′

2z
′
3

])

×
∫ +∞

−∞
z′

1(z
′
1 − z′

2 + z′
3) exp

(
− N

2σ 2
(z′

1 − z′
2)

2

)
dz′

1. (B.44)

Next, we note that

z′
1(z

′
1 − z′

2 + z′
3) = (z′

1 − z′
2)

2 + (z′
2 + z′

3)(z
′
1 − z′

2) + z′
2z

′
3. (B.45)

Therefore,

E


∑

m 
=n

ImInxmxn


 = N(N − 1)

N

(2π)3/2(N − 2)1/2σ 3

×
∫ +∞

0

∫ +∞

0
dz′

2 dz′
3 exp

(
− 1

2(N − 2)σ 2

[
(N − 1)

(
z′2

2 + z′2
3

)
+ 2z′

2z
′
3

])

×
[(

σ√
N

)3 √
2π +

(
σ√
N

√
2π

)
z′

2z
′
3

]
. (B.46)

Since
N − 1√
N − 2

=
√

N + O
(
N− 3

2
)

(B.47)

and
1

(N − 2)

[
(N − 1)

(
z′2

2 + z′2
3

)
+ 2z′

2z
′
3

] = z′2
2 + z′2

3 +
(z′

2 + z′
3)

2

N
+ O

(
1

N2

)
(B.48)
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we have

exp

(
− 1

2(N − 2)σ 2

[
(N − 1)

(
z′2

2 + z′2
3

)
+ 2z′

2z
′
3

]) ≈ exp

(
−z′2

2 + z′2
3

2σ 2

)[
1 − (z′

2 + z′
3)

2

2σ 2

1

N

]
.

(B.49)

Putting everything together, we find

E


∑

m 
=n

ImInxmxn


 ≈ N2

2πσ 2

∫ +∞

0

∫ +∞

0
dz′

2 dz′
3 exp

(
−z′2

2 + z′2
3

2σ 2

)

×
[

1 − (z′
2 + z′

3)
2

2σ 2

1

N

](
σ 2

N
+ z′

2z
′
3

)

≈ N2

2πσ 2

∫ +∞

0

∫ +∞

0
dz′

2 dz′
3 exp

(
−z′2

2 + z′2
3

2σ 2

)

×
[
z′

2z
′
3 +

(
σ 2 − z′

2z
′
3(z

′
2 + z′

3)
2

2σ 2

)
1

N

]

≈ N2σ 2

2π

(
1 − 2

N

)
. (B.50)

From equations (B.34), (B.36) and (B.50), we conclude that

E

[(∑
Ikxk

)2
]

= Nσ 2

2
+

N2σ 2

2π

(
1 − 2

N

)
. (B.51)

Since Var
[∑

Ikxk
] = E

[(∑
Ikxk

)2]− (E[Ikxk])2, and from equations (B.33) and (B.51), we
find

Var
[∑

Ikxk

]
≈ Nσ 2

2
+

N2σ 2

2π

(
1 − 2

N

)
−
[

Nσ√
2π

(
1 − 1

2

1

N

)]2

≈ Nσ 2

2

(
1 − 1

π

)
. (B.52)

In summary,

E
[∑

Ikxk

]
≈ Nσ√

2π
and Var

[∑
Ikxk

]
≈ Nσ 2

2

(
1 − 1

π

)
. (B.53)

Next, we consider Cov
[∑

Ik,
∑

Ikxk
]

Cov
[∑

Ik,
∑

Ikxk

]
= E

[∑
Ik

∑
Ikxk

]
− E

[∑
Ik

]
E
[∑

Ikxk

]
. (B.54)

But

E
[∑

Ik

∑
Ikxk

]
= E

[∑
Ikxk

]
+ E


 ∑

m,n
=m

ImInxn




≈ Nσ√
2π

(
1 − 1

2

1

N

)
+ N(N − 1)E[I1I2x1]. (B.55)

The same change of variables that were introduced in equation (C.6) can be used in this case
as well, leading us to the following:

E[I1I2x1] = N

(2π)3/2(N − 2)1/2σ 3

∫ +∞

z′
3=0

∫ +∞

z′
2=0

∫ +∞

z′
1=−∞

z′
1 exp

(
− 1

2σ 2

{
Nz′2

1 +
N2 − N − 1

N − 2
z′2

2

+
N − 1

N − 2
z′2

3 − 2Nz′
1z

′
2 +

2

N − 2
z′

2z
′
3

})
dz′

1 dz′
2 dz′

3. (B.56)
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Again, very similar to equation (B.71)

E


∑

m 
=n

ImInxn


 = N(N − 1)

N

(2π)3/2(N − 2)1/2σ 3

×
∫ +∞

0

∫ +∞

0
dz′

2 dz′
3 exp

(
− 1

2(N − 2)σ 2

[
(N − 1)

(
z′2

2 + z′2
3

)
+ 2z′

2z
′
3

])

×
∫ +∞

−∞
z′

1 exp

(
− N

2σ 2
(z′

1 − z′2
2 )

)
dz′

1 (B.57)

≈ N2σ

2
√

2π

(
1 − 5

2

1

N

)
. (B.58)

As a result,

E
[∑

Ik

∑
Ikxk

]
≈ N2σ

2
√

2π

(
1 − 5

2

1

N

)
+

Nσ√
2π

(
1 − 1

2

1

N

)
(B.59)

which, in turn, means

Cov
[∑

Ik,
∑

Ikxk

]
≈ N2σ

2
√

2π

(
1 − 5

2

1

N

)
+

Nσ√
2π

(
1 − 1

2

1

N

)
−
[
N

2

] [
Nσ√

2π

(
1 − 1

2

1

N

)]

≈ Nσ

2
√

2π

[
N − 5

2
+ 2 − 1

N
− N +

1

2

]
= O(1). (B.60)

Combining equations (B.29), (B.53) and (B.60), we can calculate Var[µ̂2]

Var[µ̂2] = Var

[∑
Ikxk∑
Ik

]

=
(
E
[∑

Ikxk
])2(

E
[∑

Ik
])2

(
Var
[∑

Ikxk
]

(
E
[∑

Ikxk
])2 +

Var
[∑

Ik
]

(
E
[∑

Ik
])2 − 2

Cov
[∑

Ikxk,
∑

Ik
]

E
[∑

Ikxk
]

E
[∑

Ik
]
)

=
(

Nσ√
2π

)2
(

N
2

)2

 N

4

(
1 − 2

π

)
(

N
2

)2 +
Nσ 2

2

(
1 − 1

π

)
(

Nσ√
2π

)2 + O

(
1

N2

)
≈ 2σ 2

N

(
1 − 2

π2

)
. (B.61)

From symmetry considerations, the same result is valid for µ̂1.
Finally, we need to find Var[µ̂2 − µ̂1] for which we have to find Cov[µ̂1, µ̂2]:

Cov[µ̂1, µ̂2] = E[µ̂1µ̂2] − E[µ̂1]E[µ̂2]. (B.62)

In order to calculate the above expectations, we use the following theorem which holds when
standard deviations are much smaller than their corresponding means

E

[
X

Y

]
= X̄

Ȳ

(
1 +

Var[X]

X̄2
− Cov[X, Y]

X̄Ȳ

)
. (B.63)

We therefore have

E[µ̂2] = −E[µ̂1] = E
[∑

Ikxk
]

E
[∑

Ik
]
(

1 +
Var
[∑

Ik
]

(
E
[∑

Ik
])2 − Cov

[∑
Ik,
∑

Ikxk
]

E
[∑

Ik
]

E
[∑

Ikxk
]
)

(B.64)

=
Nσ√

2π

(
1 − 1

2
1
N

)
N
2

(
1 +

N
4

(
1 − 2

π

)
N2

4

+ O

(
1

N2

))

= σ

√
2

π

(
1 +

(
1

2
− 2

π

)
1

N

)
. (B.65)
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As a result,

E[µ̂1]E[µ̂2] = −2σ 2

π

(
1 +

(
1 − 4

π

)
1

N

)
. (B.66)

The last piece we need is

E[µ̂1µ̂2] = E

[∑
Ikxk

∑
Jkxk∑

Ik
∑

Jk

]
= E

[∑
ImJnxmxn∑

ImJn

]

= E
[∑

ImJnxmxn
]

E
[∑

ImJn
]

(
1 +

Var
[∑

ImJn
]

(
E
[∑

ImJn
])2 − Cov

[∑
ImJnxmxn,

∑
ImJn

]
E
[∑

ImJnxmxn
]

E
[∑

ImJn
]
)

. (B.67)

Calculations very similar to those above show that the last two terms in parentheses do not
contribute to the order of magnitude we are looking for. It can also be shown that

E
[∑

ImJn

]
= N2

4

(
1 +

(
2

π
− 1

)
1

N

)
(B.68)

E
[∑

ImJnxmxn

]
= −N2σ 2

2π

(
1 − 2

N

)
. (B.69)

Putting everything together, we find

E[µ̂1µ̂2] = E
[∑

ImJnxmxn
]

E
[∑

ImJn
] = −2σ 2

π

(
1 −

(
1 +

2

π

)
1

N

)
. (B.70)

Using equations (B.62), (B.66) and (B.70), we find

Cov[µ̂1, µ̂2] = −2σ 2

π

(
1 −

(
1 +

2

π

)
1

N

)
+

2σ 2

π

(
1 +

(
1 − 4

π

)
1

N

)

= 4σ 2

N

(
1

π
− 1

π2

)
. (B.71)

Now we can calculate the variance of µ̂2 − µ̂1

Var[µ̂2 − µ̂1] = Var[µ̂1] + Var[µ̂2] − 2 Cov[µ̂1, µ̂2]

= 2(Var[µ̂2] − Cov[µ̂1, µ̂2]). (B.72)

Using equations (B.61) and (B.71), we find

Var[µ̂2 − µ̂1] = 2

(
2σ 2

N

(
1 − 2

π2

)
− 4σ 2

N

(
1

π
− 1

π2

))

= 4σ 2

N

(
1 − 2

π

)
. (B.73)

Obviously,

σ̂ = 2σ
√

1 − 2/π√
N

. (B.74)

This concludes the proof that σ̂ is proportional to N−1/2.
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B.2. Method of moments

We first prove that, for large N,

Var[V2] ∝ 1

N
(B.75)

with V2 defined in equation (5). Using the fact that x̄ = (x1 + x2 + · · · + xN)/N , we can
re-arrange equation (5) to find that

V2 =
(

N − 1

N2

)∑
i

x2
i +

(−1

N2

)∑
i

∑
j 
=i

xixj . (B.76)

Therefore,

Var[V2] =
(

N − 1

N2

)2

Var
[∑

x2
i

]
+

1

N4
Var


∑

i

∑
j 
=i

xixj




− N − 1

N4
Cov


∑ x2

i ,
∑

i

∑
j 
=i

xixj


 . (B.77)

As for the first term,

Var

[∑
i

x2
i

]
= N Var

[
x2

1

]
+ N(N − 1)Cov

[
x2

1 , x2
2

]
. (B.78)

But since xi are independently drawn samples, the second term in the above is zero and we
have

Var

[∑
i

x2
i

]
= N Var

[
x2

1

]
= O(N). (B.79)

Next consider the second term in equation (B.77):

Var


∑

i

∑
j 
=i

xixj


 = 2N(N − 1)Var[x1x2] + N(N − 1)(N − 2)(N − 3)Cov[x1x2, x3x4]

+ 4N(N − 1)(N − 2)Cov[x1x2, x1x3]

� 4N(N − 1)(N − 2)Cov[x1x2, x1x3]

= O(N3), (B.80)

while the third line is again due to the fact that samples are independent. Finally, the last term
in equation (B.77) is

Cov


∑ x2

i ,
∑

i

∑
j 
=i

xixj


 = N(N − 1)(N − 2)Cov

[
x2

1 , x2x3
]

+ 2N(N − 1)Cov
[
x2

1 , x1x2
]

= 2N(N − 1)Cov
[
x2

1 , x1x2
]

= O(N2). (B.81)

Putting everything together

Var[V2] =
(

N − 1

N2

)2

O(N) +
1

N4
O(N3) − N − 1

N4
O(N2). (B.82)
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It is now clear that

Var[V2] ∝ 1

N
(B.83)

for large N.
Note that the above implies that the fluctuation of V2 around its mean will become smaller

and smaller as N gets larger. In other words,

Var[V2]

E[V2]
→ 0 N → ∞. (B.84)

Therefore, the following is true (most of the time) for large N:

V2 = E[V2] + ε ε � 1. (B.85)

As a result,

V
1/2

2 = (E[V2])1/2 +
1

2

ε

(E[V2])1/2
(B.86)

which, in turn, means

Var
[
V

1/2
2

] = 1

4E[V2]
Var[V2]. (B.87)

Combining equations (B.83) and (B.87), and noting that E[V2] is independent of N, results in

Var
[
V

1/2
2

] ∝ 1

N
. (B.88)

Appendix C. Quadratic shape of δ–m curve

If we denote the noise pdf for an individual measurement by F(x), then the mixture pdf
f (x;µ1, µ2) will have the following form:

f (x;µ1, µ2) = 1
2 [F(x − µ1) + F(x − µ2)]. (C.1)

A natural assumption to make about random noise is that it has zero mean. Therefore, we can
state the following about F(x):∫ +∞

−∞
F(u′) du′ = 1 (C.2)

∫ +∞

−∞
u′F(u′) du′ = 0. (C.3)

C.1. Naive estimation method

As discussed above, the first step in the naive estimation is finding the global mean

x̄ =
∫ +∞

−∞
x ′f (x ′) dx ′ = µ1 + µ2

2
(C.4)

where the second equality results from equation (C.1). Next, we estimate µ1 and µ2 by
averaging over all measurements to one side of the global mean:

m1 =
∫ x̄

−∞ f (x ′)x ′ dx ′∫ x̄

−∞ f (x ′) dx ′ m2 =
∫ +∞
x̄

f (x ′)x ′ dx ′∫ +∞
x̄

f (x ′) dx ′ . (C.5)
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The denominators normalize the truncated pdfs. (Note that, since we have replaced the
samples by their asymptotic pdf, the expressions in equation (C.5) represent the estimate
means.) Obviously, m = m2 − m1.

Combining equations (C.1) and (C.5) results in

m1 =
1
2

[∫ x̄

−∞ F(x ′ − µ1)x
′ dx ′ +

∫ x̄

−∞ F(x ′ − µ2)x
′ dx ′]

1
2

[∫ x̄

−∞ F(x ′ − µ1) dx ′ +
∫ x̄

−∞ F(x ′ − µ2) dx ′] = A1 + B1

C1 + D1
(C.6)

m2 =
1
2

[∫ +∞
x̄

F (x ′ − µ1)x
′ dx ′ +

∫ +∞
x̄

F (x ′ − µ2)x
′ dx ′]

1
2

[∫ +∞
x̄

F (x ′ − µ1) dx ′ +
∫ +∞
x̄

F (x ′ − µ2) dx ′] = A2 + B2

C2 + D2
. (C.7)

Consider A2 in equation (C.7). A change of variable u′ = x ′ − µ1 results in

A2 =
∫ +∞

δ
2

F(u′)u′ du′ + µ1

∫ +∞

δ
2

F(u′) du′. (C.8)

(Remember that δ = µ2 − µ1.) Since
∫ +∞

δ
2

= ∫∞
0 − ∫ δ

2
0 , we can use the assumption that δ is

small to approximate the above integrals

∫ δ
2

0
F(u′) du′ ≈ F(0)

∫ δ
2

0
du′ = δ

2
F(0) (C.9)

∫ δ
2

0
F(u′)u′ du′ ≈ F(0)

∫ δ
2

0
u′ du′ = δ2

8
F(0). (C.10)

Equation (C.8) now reads

A2 =
∫ +∞

0
F(u′)u′ du′ − δ2

8
F(0) + µ1

[∫ +∞

0
F(u′) du′ − δ

2
F(0)

]
. (C.11)

In a completely similar way, we can find the following:

B2 =
∫ +∞

0
F(u′)u′ du′ − δ2

8
F(0) + µ2

[∫ +∞

0
F(u′) du′ +

δ

2
F(0)

]
(C.12)

C2 =
∫ +∞

0
F(u′) du′ − δ

2
F(0) (C.13)

D2 =
∫ +∞

0
F(u′) du′ +

δ

2
F 2(0). (C.14)

For m1, we will have

A1 =
∫ 0

−∞
F(u′)u′ du′ +

δ2

8
F(0) + µ1

[∫ 0

−∞
F(u′) du′ +

δ

2
F(0)

]
(C.15)

B1 =
∫ 0

−∞
F(u′)u′ du′ +

δ2

8
F(0) + µ2

[∫ 0

−∞
F(u′) du′ − δ

2
F(0)

]
(C.16)

C1 =
∫ 0

−∞
F(u′) du′ +

δ

2
F(0) (C.17)

D1 =
∫ 0

−∞
F(u′) du′ − δ

2
F(0). (C.18)
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Putting everything together we find

m = m2 − m1 = (A2 + B2)(C1 + D1) − (A1 + B1)(C2 + D2)

(C1 + D1)(C2 + D2)
(C.19)

=
∫ +∞

0 F(u′)u′ du′ + F(0)

8 δ2∫ +∞
0 F(u′) du′ ∫ 0

−∞ F(u′) du′
. (C.20)

Thus, there is no linear term in the expression for m̂.

C.2. Second-moment estimator method

Since m is, by definition, an expectation value, it can be found by increasing N to infinity,
where the variance σR approaches zero. At this limit, measurement moments can be replaced
by moments of pdfs they are sampled from:

m2 = V2(N → ∞) =
∫ +∞

−∞
f (u′)u′2 du′ −

[∫ +∞

−∞
f (u′)u′ du′

]2

. (C.21)

with f (x) defined in (C.1). It is easy to see that∫ +∞

−∞
f (u′)u′ du′ = µ1 + µ2

2
(C.22)

∫ +∞

−∞
f (u′)u′2 du′ = µ2

1 + µ2
2

2
+
∫ +∞

−∞
F(u′)u′2 du′. (C.23)

As a result,

m2 =
∫ +∞

−∞
F(u′)u′2 du′ +

δ2

4
. (C.24)

Clearly, for small δ

m �
[∫ +∞

−∞
F(u′)u′2 du′

]1/2

+
δ2

8
[∫ +∞

−∞ F(u′)u′2 du′]1/2 (C.25)

which contains no linear term.
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